3 Mart 2013 Pazar

SOUTHBRIDGE (WITH HEATSINK)


This article is about components used to cool semiconductors. For other uses, see Heat sink (disambiguation).
A fan-cooled heat sink on the processor of a personal computer. To the right is a smaller heat sink cooling another integrated circuit of the motherboard.
In electronic systems, a heat sink is a passive heat exchanger component that cools a device by dissipating heat into the surrounding air. In computers, heat sinks are used to cool central processing units or graphics processors. Heat sinks are used with high-power semiconductor devices such as power transistors and optoelectronic devices such as lasers and light emitting diodes (LEDs), wherever the heat dissipation ability of the basic device package is insufficient to control its temperature.
A heat sink is designed to increase the surface area in contact with the cooling medium surrounding it, such as the air. Approach air velocity, choice of material, fin (or other protrusion) design and surface treatment are some of the factors which affect the thermal performance of a heat sink. Heat sink attachment methods and thermal interface materials also affect the eventual die temperature of the integrated circuit. Thermal adhesive or thermal grease fills the air gap between the heat sink and device to improve its thermal performance. Theoretical, experimental and numerical methods can be used to determine a heat sink's thermal performance.

CMOS BACKUP BATTERY

A backup battery provides power to a system when the primary source of power is unavailable. Backup batteries range from small single cells to retain clock time and date in computers, up to large battery room facilities that power uninterruptible power supply systems for large data centers. Small backup batteries may be primary cells; rechargeable backup batteries are kept charged by the prime power supply.

GRAPHICS PROCESSOR


A graphics processing unit (GPU), also occasionally called visual processing unit (VPU), is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display. GPUs are used in embedded systems, mobile phones, personal computers, workstations, and game consoles. Modern GPUs are very efficient at manipulating computer graphics, and their highly parallel structure makes them more effective than general-purpose CPUs for algorithms where processing of large blocks of data is done in parallel. In a personal computer, a GPU can be present on a video card, or it can be on the motherboard or—in certain CPUs—on the CPU die.[1]
The term GPU was popularized by Nvidia in 1999, who marketed the GeForce 256 as "the world's first 'GPU', or Graphics Processing Unit, a single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines that are capable of processing a minimum of 10 million polygons per second". Rival ATI Technologies coined the term visual processing unit or VPU with the release of the Radeon 9700 in 2002.

PCI SLOT


Conventional PCI (PCI is an initialism formed from Peripheral Component Interconnect,[1] part of the PCI Local Bus standard and often shortened to PCI) is a local computer bus for attaching hardware devices in a computer. The PCI bus supports the functions found on a processor bus, but in a standardized format that is independent of any particular processor. Devices connected to the bus appear to the processor to be connected directly to the processor bus, and are assigned addresses in the processor's address space.[2]
Attached devices can take either the form of an integrated circuit fitted onto the motherboard itself, called a planar device in the PCI specification, or an expansion card that fits into a slot. The PCI Local Bus was first implemented in IBM PC compatibles, where it displaced the combination of ISA plus one VESA Local Bus as the bus configuration. It has subsequently been adopted for other computer types. PCI and PCI-X are being replaced by PCI Express,[citation needed] but as of 2011, most motherboards are still made with one or more PCI slots, which are sufficient for many uses.
The PCI specification covers the physical size of the bus (including the size and spacing of the circuit board edge electrical contacts), electrical characteristics, bus timing, and protocols. The specification can be purchased from the PCI Special Interest Group (PCI-SIG).
Typical PCI cards used in PCs include: network cards, sound cards, modems, extra ports such as USB or serial, TV tuner cards and disk controllers. PCI video cards replaced ISA and VESA cards, until growing bandwidth requirements outgrew the capabilities of PCI; the preferred interface for video cards became AGP, and then PCI Express. PCI video cards remain available for use with old PCs without AGP or PCI Express slots.[3]
Many devices previously provided on PCI expansion cards are now commonly integrated onto motherboards or available in universal serial bus and PCI Express versions.

GIGABIT ETHERNET CHIP


In computer networking, gigabit Ethernet (GbE or 1 GigE) is a term describing various technologies for transmitting Ethernet frames at a rate of a gigabit per second (1,000,000,000 bits per second), as defined by the IEEE 802.3-2008 standard. It came into use beginning in 1999, gradually supplanting Fast Ethernet in wired local networks, where it performed considerably faster. The cables and equipment are very similar to previous standards and were very common and economical by 2010.
Half-duplex gigabit links connected through hubs are allowed by the specification,[1] but full-duplex usage with switches is much more common.

PCI EXPRESS


PCI Express (Peripheral Component Interconnect Express), officially abbreviated as PCIe, is a high-speed serial computer expansion bus standard designed to replace the older PCI, PCI-X, and AGP bus standards. PCIe has numerous improvements over the aforementioned bus standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance-scaling for bus devices, a more detailed error detection and reporting mechanism (Advanced Error Reporting (AER) [1]), and native hot-plug functionality. More recent revisions of the PCIe standard support hardware I/O virtualization.
The PCIe electrical interface is also used in a variety of other standards, most notably ExpressCard, a laptop expansion card interface.
Format specifications are maintained and developed by the PCI-SIG (PCI Special Interest Group), a group of more than 900 companies that also maintain the conventional PCI specifications. PCIe 3.0 is the latest standard for expansion cards that is in production and available on mainstream personal computers.

CPU SOCKET


A CPU socket or CPU slot is a mechanical component that provides mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows the CPU to be replaced without soldering.
Common sockets have retention clips that apply a constant force, which must be overcome when a device is inserted. For chips with a large number of pins, either zero insertion force (ZIF) sockets or land grid array (LGA) sockets are used instead. These designs apply a compression force once either a handle (for ZIF type) or a surface plate (LGA type) is put into place. This provides superior mechanical retention while avoiding the risk of bending pins when inserting the chip into the socket.
CPU sockets are used in desktop and server computers. As they allow easy swapping of components, they are also used for prototyping new circuits. Laptops typically use surface mount CPUs, which need less space than a socketed part.